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In the vapour phase and close to the liquid–vapour saturation curve, fluids made
of complex molecules are expected to exhibit a thermodynamic region in which the
fundamental derivative of gasdynamic Γ is negative. In this region, non-classical
gasdynamic phenomena such as rarefaction shock waves are physically admissible,
namely they obey the second law of thermodynamics and fulfil the speed-orienting
condition for mechanical stability. Previous studies have demonstrated that the
thermodynamic states for which rarefaction shock waves are admissible are however
not limited to the Γ < 0 region. In this paper, the conditions for admissibility
of rarefaction shocks are investigated. This results in the definition of a new
thermodynamic region – the rarefaction shocks region – which embeds the Γ < 0
region. The rarefaction shocks region is bounded by the saturation curve and by the
locus of the states connecting double-sonic rarefaction shocks, i.e. shock waves in
which both the pre-shock and post-shock states are sonic. Only one double-sonic shock
is shown to be admissible along a given isentrope, therefore the double-sonic states
can be connected by a single curve in the volume–pressure plane. This curve is named
the double sonic locus. The influence of molecular complexity on the shape and size
of the rarefaction shocks region is also illustrated by using the van der Waals model;
these results are confirmed by very accurate multi-parameter thermodynamic models
applied to siloxane fluids and are therefore of practical importance in experiments
aimed at proving the existence of rarefaction shock waves in the single-phase vapour
region as well as in future industrial applications operating in the non-classical regime.

1. Introduction
The classical theory of gasdynamic discontinuities, see e.g. Hayes (1960), moves from

the conservation laws in the shock reference frame to derive the well-known Rankine–
Hugoniot equation which relates the pressure P and the specific volume v past the
shock wave for given values of P and v ahead of it. The observation – valid for the case
of a constant-specific-heat (polytropic) ideal gas – that the curvature of the Rankine–
Hugoniot locus is always concave up, together with the condition that the specific
entropy s must increase across the shock, leads to the conclusion that physically
admissible shocks are of the compression type only, whereas rarefaction shock
waves are not admissible. This results from noting that, for a polytropic ideal gas,
isentropes are always concave-up in the (v, P )-plane and so are the Rankine–Hugoniot
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Figure 1. Liquid–vapour saturation curve and Γ < 0 region (shaded region) for a BZT fluid
in the volume–pressure plane computed from the polytropic van der Waals model with
R/cv =0.001. Selected isentropes and the critical isotherm T = Tc are also indicated. Note that
the isentropes are concave-down in the Γ < 0 region.

curves, see Godlewski & Raviart (1994). The above conclusions also remain valid in
most gasdynamic applications of practical interest, including shock waves occurring
in chemically reacting flows or detonation waves.

However, the upward concavity of the isentropes is not the consequence of any
thermodynamic constraint and modern thermodynamic models of fluids characterized
by high molecular complexity – named Bethe–Zel’dovich–Thompson (BZT) fluids –
predict isentropes with downward curvature in a limited region in the vapour phase
and close to the liquid–vapour saturation curve, see figure 1. A non-dimensional
measure of the curvature of the isentropes has been introduced by Thompson (1971)
and it is usually referred to as the fundamental derivative of gasdynamics Γ , defined as

Γ ≡ v3

2c2

(
∂2P

∂v2

)
s

, (1.1)

where c2, c2 = −v2(∂P/∂v)s , is the speed of sound and where, according to standard
thermodynamic nomenclature, the subscript s indicates that the pressure derivative is
computed at constant entropy. Flows evolving in the Γ < 0 region may significantly
differ from their polytropic ideal-gas counterparts. For example, a rarefaction shock
wave (RSW) characterized by two state-points with Γ < 0 is physically admissible,
since the curvature of the isentrope and hence of the Rankine–Hugoniot curve between
the two states is reversed (negative) with respect to the ideal gas case, as pointed
out by Bethe (1942), Zel’dovich (1946) and other authors. Landau & Lifshitz (1959)
proved the following relation between the entropy difference �s and the specific
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volume difference �v across a shock wave

�s = −ΓA

6

c2
A

TA

(
�v

vA

)3

+ O([�v]4),

where T is the temperature and where the subscript A indicates the pre-shock state.
The above relation has been derived by Taylor expansion centred on A and it is
only applicable to weak shock waves. The weak shock theory therefore identifies
compressive (�v < 0) shocks as physically admissible shocks (�s > 0) if Γ > 0,
whereas RSW (�v < 0) are possible only if Γ < 0, see also Thompson (1971). Mixed
waves, such as for example a mixed rarefaction shock–fan combination, can occur
if the Γ = 0 boundary is crossed during flow evolution, a likely situation due to
the limited extent of the Γ < 0 region. Rarefaction shocks and mixed waves are
usually referred to as non-classical waves, to distinguish them from the (classical)
compression shocks and isentropic rarefaction waves.

The importance of the sign of Γ led researchers to identify the Γ < 0 region as
the so-called non-classical gasdynamic region, with the understanding that all flows
evolving within the Γ -negative thermodynamic region have opposite features with
respect to their classical counterparts. This definition is somewhat misleading, in
that, as pointed out by Fergason et al. (2001), an admissible RSW may also occur
between two states characterized by Γ > 0, provided that the corresponding Rankine–
Hugoniot curve crosses the Γ = 0 boundary. A similar result has been illustrated by
Thompson & Lambrakis (1973) under the assumption of isentropic shocks of finite
strength. The existence of such waves, which cannot be directly explained by resorting
to the weak shock theory of gasdynamics, points out the limitations of the current
definition of the non-classical region.

In this work, the admissibility conditions for the formation of an RSW are studied
in order to identify the thermodynamic region in which RSWs can occur. A new
rarefaction shocks region (RSR) is therefore introduced. This is bounded by the
liquid-vapour saturation curve and a new thermodynamic curve named the double
sonic locus (DSL), connecting state points from which a double sonic shock – a
shock wave with both pre-shock and post-shock sonic state, see e.g. Thompson &
Lambrakis (1973) and Cramer & Sen (1987) – can originate. The shape and extent
of the RSR is studied by means of the simple polytropic van der Waals model for
fluids of increasing molecular complexity. These qualitative results are confirmed by
the more accurate multi-parameter Span–Wagner thermodynamic models applied to
siloxane fluids.

The identification of the shape of the RSR is of theoretical as well as practical
interest, because it can be directly used to determine the most suitable operating
conditions for industrial applications taking advantage of the peculiarities of BZT
fluids. Moreover, owing to the relatively small extent of the non-classical region, with
pressure and temperature spanning only few bars and degrees Kelvin, respectively,
see Guardone & Argrow (2005), the correct identification of the boundaries of this
region is of paramount importance prior to any experimental attempt to demonstrate
the existence of non-classical phenomena in the vapour phase. No generally accepted
experimental evidence of such phenomena is currently available. The results of this
work have been used in the design of a dense gas Ludwieg tube for the generation of
rarefaction shock waves in siloxanes, see Zamfirescu, Guardone & Colonna (2006a, b).

This paper is structured as follows. In § 2, the Rankine–Hugoniot jump conditions
relating the flow states across a discontinuity are briefly recalled and the admissibility
condition for a shock wave is discussed. Different scenarios for the formation of an
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RSW are illustrated. In § 3, the definition of the RSR is given and the influence of
molecular complexity on the shape and extent of the RSR is investigated using the
simple van der Waals thermodynamic model. These results are confirmed by more
accurate multi-parameter thermodynamic models for siloxanes. Section 4 outlines the
concluding remarks.

2. Rarefaction shock waves in dense gases
This section briefly addresses the flow conditions resulting in the formation of a non-

classical rarefaction shock wave, in terms of both the integral relations governing the
flow states across the discontinuity and the admissibility conditions. Shock adiabats
of different shape are discussed to identify the thermodynamic region in which
rarefaction shock waves are possible, namely the RSR, and the definition of the
double sonic locus (DSL) is given.

2.1. Jump relations and the admissibility condition

Rarefaction and compression shock waves are discontinuous solutions to the Euler
equation of gasdynamics and these waves are therefore required to satisfy the well-
known Rankine–Hugoniot jump relations linking the two states A and B separated
by the shock. In the following A indicates the pre-shock state, while B indicates the
candidate post-shock state. The Rankine–Hugoniot relations are obtained by writing
the integral form of the governing equations in the shock-reference frame, a reference
frame moving with the velocity of the discontinuity, see e.g. Hayes (1960). These are

uA/vA = uB/vB,

PA + u2
A/vA =PB + u2

B/vB,

h(PA, vA) + 1
2
u2

A =h(PB, vB) + 1
2
u2

B,

⎫⎪⎬
⎪⎭ (2.1)

where the enthalpy h is computed from the pressure and the specific volume via the
thermodynamic equation of state as h = h(P, v). The system of equations (2.1) allows
one to compute the post-shock state B for a given pre-shock condition A. The above
relations include also contact surfaces, i.e. particular discontinuities in which PA =PB

and uA = uB. As it is known, the Rankine–Hugoniot system (2.1) can be rewritten as
a scalar nonlinear equation for the post-shock specific volume vB, for given values
of the pre-shock state variables vA, PA and uA, as follows. For a generic post-shock
state v = vB and P = PB, from (2.1) one has

H(P, v; PA, vA) = h(P, v) − h(PA, vA) − 1
2
(P − PA)(vA + v) = 0. (2.2)

The equation H(P, v; PA, vA) = 0 provides an implicit definition of the Rankine–
Hugoniot curve or shock adiabat centred on A, i.e.

P (v) = P H(v; PA, vA), (2.3)

which gives the post-shock value of the pressure as a function of the post-shock
specific volume for a given pre-shock thermodynamic state A. Note that the velocity
u does not appear in the expression for P H, which is a purely thermodynamic relation.
By combining the conservation of mass and momentum in system (2.1), the Rayleigh
line is obtained as

P (v) = P R(v; PA, vA, uA) = PA +

(
1 − v

vA

)
u2

A

vA

. (2.4)
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Figure 2. Geometrical interpretation of the admissibility condition (2.6). Points AC and AN

are the pre-shock states for the classical and non-classical case; possible post-shock states are
indicated with the letter B.

The downstream specific volume vB is finally found by solving for vB the equation

P H(vB; PA, vA) = P R(vB; PA, vA, uA), (2.5)

which in general admits multiple solutions.
The unique admissible downstream state among the solutions of (2.5) is selected by

imposing the entropy condition �s > 0, see Smoller (1983) and Oleinik (1959), which,
together with the shock stability or speed orienting condition MA � 1 � MB, with
M = |u|/c the Mach number, see Lax (1957), gives

dP H

dv

∣∣∣∣
A

�
dP R

dv

∣∣∣∣
A

≡ PA − PB

vA − vB

≡ dP R

dv

∣∣∣∣
B

�
dP H

dv

∣∣∣∣
B

, (2.6)

where equalities hold for sonic pre- or post-shock states, see Kluwick (2001). The
above expression allows a geometrical interpretation as explained in the following.

With reference to figure 2, the classical gasdynamic case is analysed first. Consider
a state point AC in the (v, P )-plane. The isentrope through AC is concave up since
Γ > 0 everywhere. Correspondingly, the Rankine–Hugoniot curve from point AC is
concave up, since it shares a second-order contact point with the isentrope in AC,
as shown in the following. Differentiating equation (2.2), dH =0, and substituting in
the expression obtained the definition of the enthalpy h(P, v) = e(P, v) + Pv, where
e is the internal specific energy per unit mass, and the thermodynamic identity
T ds = de + P dv, yields

2T ds = (P − PA) dv − (v − vA) dP,
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which gives ds ≡ 0 at A. The Rankine–Hugoniot curve is therefore tangent in A to
the isentrope through A. Differentiating again, one obtains

2T d2s + 2 (dT ) ds =(P − PA) d2v − (v − vA) d2P,

which gives d2s ≡ 0 at A, that is, the Rankine–Hugoniot curve and the isentrope
through A are osculatory at A, see Godlewski & Raviart (1994).

Two possible post-shock states BC1 and BC2 are now considered. Point BC1, which
corresponds to a compression shock, is admissible since it satisfies the admissibility
criterion (2.6). The slope dP H/dv of the Rankine–Hugoniot curve at point AC is
larger than the slope of the Rayleigh line AC–BC1, which in turn is greater than the
slope dP H/dv in BC1, as prescribed by condition (2.6). Conversely, the rarefaction
shock AC–BC2 is not admissible. The reversed situation occurs in the non-classical
case, where both the isentropes and the Rankine–Hugoniot curve are concave-down
and therefore admissible shock waves are solely of the rarefaction type.

Criterion (2.6) provides a useful tool to identify the admissible shocks along a
given shock adiabat, by simple comparison of the slope of the adiabat at the pre-
and post-shock states with the slope of the segment connecting the pre-shock state.
Criterion (2.6) is used in the next section to determine the admissibility conditions for
a non-classical RSW in the various possible situations occurring in the compressible
flow of a BZT fluid.

2.2. Rarefaction shock waves

It is remarkable that the Rankine–Hugoniot curve (2.3) identifies a two-parameter
family of thermodynamic curves, differently from more common thermodynamic
loci such as, for example, isotherms or isentropes, which are defined by one single
parameter. Each shock adiabat is defined by specifying the pre-shock values of both
the pressure and the specific volume independently – or of any two other independent
thermodynamic variables identifying the pre-shock thermodynamic state of the fluid.

Inspection of figure 1 reveals that for entropies larger than the special value sτ ,
for which the isentrope is tangent to the Γ = 0 line, the isentropes and hence the
Rankine–Hugoniot curves are concave-up everywhere, and the classical situation is
recovered. Isentropes with s < sτ cross the Γ =0 line twice and therefore a portion
of these isentropic curves exhibits a downward curvature. Isentropes intersecting the
vapour-liquid equilibrium (VLE) line are not considered since this study is limited to
the treatment of single-phase flows. Single-phase isentropes with s < sτ display one
and the same qualitative shape and the study of the Rankine–Hugoniot curve can
be accomplished by considering initial states located along a representative isentrope
crossing the Γ =0 line.

With reference to figure 3, four different state points with increasing specific
volumes, namely points A1, A2, A3 and A4, are considered in order to identify the
different scenarios for the occurrence of an RSW. All these points are located along
the isentrope s = sA <sτ . Point A4 is characterized by Γ < 0, whereas Γ is positive for
all remaining points. Each state point is taken as the pre-shock state to construct the
corresponding Rankine–Hugoniot curves in figures 4–7, where candidate post-shock
points B are also indicated. Note that the curves in figures 4–7 are only qualitative,
used here only for explanation purposes. Points A1, A2, A3 and A4 have been chosen
in order to investigate all the possible conditions for the formation of an RSW. It is
anticipated here, to the understanding of the following treatment, that from point A1

no RSW is admissible, that only a double sonic RSW can originate from A2 and that
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Figure 3. Selected pre-shock state points along a representative isentrope s = sA < sτ . The
corresponding Rankine–Hugoniot curves are drawn in figures 4–7.

a pre- and post-shock sonic RSW as well as non-sonic RSW can originate from point
A3. Finally, from point A4, only post-shock sonic and non-sonic RSW can arise.

State A1 in figure 4 is considered first. Since Γ > 0 at A1, both the isentrope through
A1 and the Rankine–Hugoniot curve centred at A1 are concave-up at A1, see § 2.1.
Figure 4 qualitatively shows both the Rankine–Hugoniot curve and the isentrope
through A1. Post-shock state B11 fulfils the entropy condition (2.6) and therefore the
classical compression shock A1–B11 is admissible. The above does not hold for the
remaining candidate post-shock states B12, B13, B14 and B15, which would lead to an
RSW, as can be verified from figure 4. For these reasons, any shock originating from
state A1 can be of the compressive type only.

Point A2 in figure 5 is now considered. As in the previous case, post-shock state
B21 is associated with an admissible compressible shock and all states along the
Rankine–Hugoniot through A2 and characterized by vB <vA2

can be connected to A2

by a compression shock wave. On the other hand, RSW connecting states B22 and B23

do not fulfil condition (2.6). The only admissible RSW is A2–B24, which is a special
one: at both A2 and B24, the Rayleigh line is tangent to the Rankine–Hugoniot curve,
namely,

dPH

dv

∣∣∣∣
A

=
PA − PB

vA − vB

=
dPH

dv

∣∣∣∣
B

,

or MA = 1 = MB, that is, both the pre- and the post-shock states are sonic. This special
shock wave is termed the double sonic shock and has been studied by Cramer & Sen
(1987) for a polytropic van der Waals gas. All post-shock states to the right of point
B24 are not admissible. Therefore, only the double sonic RSW A2–B24 can be associated
with point A2.
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Figure 4. Rankine–Hugoniot curve through point A1 and candidate post-shock states B11,
B12, B13, B14 and B15. Only state B11 fulfils condition (2.6) and hence only a compression shock
can originate from A1.

With reference to figure 6, admissible RSW originating from point A3 are bounded
by the two special shocks A3–B32 and A3–B34. The former is characterized by a sonic
pre-shock state, since the Rayleigh line connecting points A3 and B32 is tangent to the
Rankine–Hugoniot curve in A3 and hence MA3

= 1. The latter exhibits a post-shock
sonic point, with the Rayleigh line being tangent to the Rankine–Hugoniot curve in
B34, where MB34

= 1. Rarefaction shock waves connecting point A3 with a post-shock
state located between points A3 and B32, as well as those having states with v >vB34

are not admissible. The only admissible post-shock states allowing RSW are therefore
located in between points B32 and B34 along the Rankine–Hugoniot curve, such as
e.g. point B33.

Point A4 is finally considered. Since Γ < 0 in A4, the curvature of the Rankine–
Hugoniot curve is negative in A4, see figure 7. All post-shock states located between
points A4 and B43 result in admissible RSW. The limiting shock A4–B43 is sonic at
B43.

No RSW can originate from fluid states featuring positive Γ but with specific
volume larger than those in the Γ < 0 region. The reader is referred to Kluwick
(2001) for a more detailed description, which also includes mixed waves.

2.3. The double sonic locus (DSL)

It can be inferred from the previous section that double sonic shocks (DSS) represent
the boundary between non-classical rarefaction shocks and classical isentropic
expansions. Along each isentrope there exist special state points such as A2 in figure 5
from which a double sonic RSW can originate. No other RSW is admissible from A2.



Admissibility region for rarefaction shock waves in dense gases 371

B24

P

v

A2

B21

B22

B23

Tangent to the Rankine–Hugoniot curve

Rankine–Hugoniot curve from A2

Rayleigh line from A2

Isentrope through A2

Figure 5. Rankine–Hugoniot curve through point A2 and candidate post-shock states B21,
B22, B23, and B24. States B21 and B24 fulfil condition (2.6), whereas states B22 and B23 do not
correspond to a physically admissible rarefaction shock. The rarefaction shock A2–B24 is a
double sonic shock.

P

v

A3
B32

B33

Tangent to the Rankine–Hugoniot curve

B34

B31

Rankine–Hugoniot curve from A3

Rayleigh line from A3

Isentrope from A3

Figure 6. Rankine–Hugoniot curve through point A3 and candidate post-shock states B31,
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condition B34 is also sonic.
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B42, B43, and B44. The rarefaction shock A3–B43 is such that B43 is sonic.

These points are labelled in the following as AD, with BD being the corresponding
post-shock sonic points.

Next, the uniqueness of the DSS on a given isentrope is discussed. For this purpose,
figure 8 shows an expansion wave from state 1 and state 2: the wave states are shown
in the (v, P ) thermodynamic plane, while the wave structure is displayed in the (x, t)
diagram. States 1 and 2 are chosen far enough from the Γ < 0 region so that the
expansion wave is a mixed wave with isentropic rarefaction from state 1 to state
AD, a DSS from AD to BD and a tailing isentropic rarefaction from BD to point
2, see e.g. Kluwick (2001). Note that s1 = sAD

and that s2 = sBD
, but s1 �= s2 because

of the entropy jump across the DSS. Consider a second state A′
D �= AD along the

isentrope s = s1, connected to the post-shock state B′
D via a DSS. Since the slope of

the isentrope at A′
D is different from that in AD, the slopes of the Rayleigh lines

AD–BD and A′
D–B′

D differ. Therefore, the DSS strength and hence the entropy jump
across the DSS are different in the two cases; consequently states BD and B′

D are
located on two different isentropes. Thus, the existence of a second DSS shock A′

D–B′
D

would lead to multiple solutions of the Riemann problem from state (P1, v1) to v2,
since P2 = P (sBD

, v2) �= P (sB′
D
, v2) = P2′ .

The uniqueness of the double sonic rarefaction shock along a given isentrope is
therefore guaranteed by the uniqueness of the solution of the Riemann problem.

In this respect, Liu (1975) demonstrated that there exists a unique solution to the
Riemann problem of gasdynamics provided that(

∂P

∂e

)
v

> 0 and

(
∂P

∂v

)
e

< 0. (2.7)
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shock.

The fulfilling of conditions (2.7) in the case of the dense gases considered here is
detailed in the following. For all gases, the coefficient of thermal expansion is always
positive, that is,

β =
1

v

(
∂v

∂T

)
P

> 0. (2.8)

Note that this condition is violated only in special cases, e.g. β < 0 for water at
freezing point. Therefore, using the cyclic derivative rule, one has(

∂P

∂T

)
v

= −
(

∂P

∂v

)
T

(
∂v

∂T

)
P

> 0, (2.9)

since the isothermal compressibility kT = −(1/v)(∂v/∂P )T is also a positive quantity
for all substances. From the chain derivative rule, one finally has(

∂P

∂e

)
v

=

(
∂P

∂T

)
v

(
∂T

∂e

)
v

=
1

cv

(
∂P

∂T

)
v

> 0,

where cv = (∂e/∂T )v > 0 is the isochoric specific heat. The first condition of (2.7) is
therefore demonstrated. Considering now the second condition in (2.7), from the chain
rule one has (

∂P

∂v

)
e

=

(
∂P

∂T

)
v

(
∂T

∂v

)
e

+

(
∂P

∂v

)
T

.

By using the cyclic derivative rule and the definition of the isochoric specific
heat, one obtains (∂T /∂v)e = −(∂e/∂v)T /cv . By recalling the reciprocity relation,
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(∂e/∂v)T = T (∂P/∂T )v − P , see Emanuel (1987), one finally obtains(
∂P

∂v

)
e

=

(
∂P

∂v

)
T

− T

cv

(
∂P

∂T

)
v

[(
∂P

∂T

)
v

− P

T

]
.

In the above expression, (∂P/∂v)T < 0 since kT > 0 and (∂P/∂T )v > 0 from (2.9).
Therefore, the condition (

∂P

∂T

)
v

�
P

T
(2.10)

is a sufficient condition for (2.7) to hold. Note that for an ideal gas (∂P/∂T )v ≡ P/T

and condition (2.10) is always satisfied. A noticeable example of a real gas model ful-
filling the condition above is given by the van der Waals equations of state, P (T , v) =
RT/(v − b) − a/v2, with a, b and R (positive) gas-dependent constants, for which(

∂P

∂T

)
v

=
R

v − b
>

P

T
=

R

v − b
− a

T v2
. (2.11)

A more general result is obtained by recalling the definition of the compressibility
factor,

Z(T , v) =
P (T , v)v

RT
,

which can be used to recast the pressure equation of state as P (T , v) = Z(T , v)RT/v.
Therefore, in terms of the compressibility factor Z, condition (2.10) reads(

∂Z

∂T

)
v

� 0. (2.12)

Condition (2.12) holds for the dense gas states, namely for Tr = T/Tc � 1.7 and
Pr = P/Pc � 5. This feature can be appreciated from figure 9(b), where several
isochores for argon are shown as a function of Z and Tr in the region of interest,
that is for vr � 1. Figure 9(a) reports the common compressibility Z–Pr chart of
argon in order to highlight the thermodynamic region of interest. As is well-known
from experiments, the compressibility charts of any fluid are similar from both a
qualitative and a quantitative point of view. This empirical law is known as the
principle of correspondent states. Therefore the compressibility chart represents a
useful tool with which to discuss general thermodynamic properties regardless of the
particular substance under consideration, see e.g. Callen (1985).

To conclude, provided that conditions (2.8) and (2.10) or, equivalently, (2.12) are
fulfilled, as is the case for the dense gases considered in this work, the Riemann
problem has a unique solution and hence, on a given isentrope, only one state point
leading to a DSS exists.

Thermodynamic states from which a DSS originates can be computed as follows.
For a given value s of the entropy, the pre-shock and post-shock states connected by
the DSS are computed by solving the system of four equations

PAD
= P (s, vAD

),

c(PAD
, vAD

)/vAD
= c(PBD

, vBD
)/vBD

,

P H(vBD
; PAD

, vAD
) = P R(vBD

; PAD
, vAD

, c(PAD
, vAD

)),

PBD
= P R(vBD

; PAD
, vAD

, c(PAD
, vAD

)),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)
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Figure 9. Compressibility charts for argon calculated with the thermodynamic model of
Tegeler, Span & Wagner (1999). (a) The dense gas region of interest is highlighted in the more
usual Z–Pr chart, (b) isochors (—) as a function of Z and Tr in the dense gas region have
positive slope.

for the unknown specific volume and pressure at state points AD = AD(s) and
BD = BD(s). In (2.13) c(P, v) represents the sound speed as a function of pressure and
specific volume. Note that the post-shock state point BD(s) lies on an isentrope with
s > s. The first equation of (2.13) guarantees that state AD lies on the s = s isentrope;
the remaining three equations are equivalent to the Rankine–Hugoniot system (2.1)
for sonic pre- and post- shock states, see § 2.1. System (2.13) has no solution for all
isentropes having s > sτ , namely if Γ is always positive along the isentrope.

By letting the value of the entropy change, states AD(s) from which a DSS can
originate, together with the corresponding post-shock states BD(s), describe a one-
parameter curve which will be referred to as the double sonic locus (DSL) in the
following. Cramer & Sen (1987) derived an analytical expression for double sonic
states in the case of a polytropic van der Waals gas, i.e. of the DSL, which is reported
here for completeness:

πD(ν) =
[(1 − δ)2 − (1 − δ)(1 − 3δ)/ν − 8δ/ν2 − 4/ν3]/ν

2(1 + δ)(2 + δ)
(2.14)

where π = P/(a/b2) and ν = v/b are pre-shock values and where δ =R/cv , with cv

being a constant according to the polytropic approximation. In the next section,
the DSL is used as the boundary of the thermodynamic region in which RSWs are
admissible and other aspects are discussed.

3. The rarefaction shocks region of dense gases
The results from the previous sections are used in the following to identify the

thermodynamic region in which rarefaction shocks are admissible.
Pre-shock states on an isentrope which does not cross the liquid-vapour saturation

curve are considered first, as in § 2.2. The double sonic shock states AD and BD are
computed together with the intersections of the isentrope and the Γ = 0 line, which are
denoted by Γ0,1 and Γ0,2, with Γ0,1 being associated with the lowest specific volume.
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Figure 10. Rarefaction shocks region (RSR) for a van der Waals polytropic gas with
R/cv = 0.052.

For pre-shock states with specific volume lower than that of state AD, no RSW are
possible. From state AD, the only admissible RSW is the DSS connecting AD and
BD, as in figure 5. Between states AD and Γ0,1, either pre-shock sonic or post-shock
sonic RSW are possible, together with non-sonic RSW. Note that the specific volume
of the post-shock states ranges from the value corresponding to the pre-shock sonic
RSW up to the one corresponding to the post-shock sonic RSW, see figure 6. For
pre-shock states embedded in the Γ < 0 region, namely, between Γ0,1 and Γ0,2, only
post-shock sonic and non-sonic RSW are possible. Post-shock specific volumes are
limited by the pre-shock value – corresponding to an RSW of zero intensity, i.e. to
an acoustic wave – up to the post-shock sonic state. For specific volumes larger than
that associated with Γ0,2, no RSW are possible regardless of the post-shock state.

Following the above considerations, a rarefaction shock region (RSR) can be
defined as the one which embeds all the thermodynamic states that can possibly
be connected by a RSW. The newly defined thermodynamic region is depicted in
figure 10, for a van der Waals polytropic gas with R/cv =0.052. The DSL is split
into a pre-shock portion identifying all states AD, lying along the curve from AV

D to
τ , and a corresponding post-shock line from τ to BV

D. Point AV
D is the intersection

of the DSL and the VLE line; the latter is taken as an additional boundary of the
RSR since only single-phase RSW are considered here. All shocks originating from
the VLE line, from AV

D to the point Γ V
0,2, where the Γ = 0 curve intersects the VLE

line, have a maximum specific volume at the post-shock state which corresponds to
the post-shock sonic conditions. These limiting post-shock states constitute the last
portion of the boundary of the RSR, namely, the post-shock sonic from VLE (PSV)
line indicated in figure 10.
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Figure 11. Rarefaction shock region (RSR) for different van der Waals polytropic gases;
δ = R/cv .

Remarkably, the RSR is larger than the Γ < 0 region, as expected from previous
studies, and it also includes states with Γ > 0. In the following section, the influence
of molecular complexity on the shape and extent of the RSR is investigated. Finally,
an accurate multi-parameter thermodynamic model is used to verify the qualitative
results obtained here by means of the simple polytropic van der Waals model.

3.1. Influence of molecular complexity

Different fluids are considered to study the influence of molecular complexity on the
shape and extent of the rarefaction shock region defined in the previous section.

Figure 11 shows the RSR of fluids with increasing molecular complexity for a
van der Waals polytropic gas. The only parameter which characterizes the molecular
complexity in such a gas is the dimensionless (inverse) specific heat δ =R/cv . In
particular, the lower the value of δ, the higher the molecular complexity of the fluid,
see Colonna & Guardone (2006). Accordingly, different curves in figure 11 correspond
to different values of δ.

The size of the RSR increases with increasing molecular complexity, as does the
size of the Γ < 0 region. The shape of the RSR is that depicted in figure 10 up to the
special value δ � 0.05105. For δ > 0.05105, the Rankine–Hugoniot curve connecting
the limiting states AV

D and BV
D crosses the liquid-vapour equilibrium region. Initial

states which lead to the crossing of the VLE line can be removed from the RSR region
by computing a limiting Rankine–Hugoniot curve originating from the DSL line that
is tangent to the saturation curve, as shown in figure 12. The additional boundary
of the RSR region is the locus of all pre-shock states whose associated Rankine–
Hugoniot curve are tangent to the saturation curve. Note that such an enlarged RSR
represents an extreme situation not likely to be observed in real substances. In fact,
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Figure 12. Rarefaction shock region (RSR) for a van der Waals polytropic gas with
R/cv = 0.001.

it is well known that the van der Waals model predicts a Γ < 0 region, and hence
an RSR, which is larger if compared to more accurate thermodynamic models, as
discussed for example by Cramer (1989) and Guardone & Argrow (2005). In the next
section, the qualitative information obtained here by means of the simple van der
Waals model is confirmed by the more accurate predictions obtained by means of
multi-parameter thermodynamic models.

3.2. Span–Wagner model of siloxane fluids

The simple van der Waals model used in the previous sections to determine the RSR is
abandoned here in favour of more complex multi-parameter equations of state in the
Span–Wagner form, see e.g. Span & Wagner (2003a,b). This modern equation of state
allows accurate computations of all relevant thermodynamic properties over the entire
thermodynamic range (even close to the critical point) with the accuracy required
for design and analysis of advanced technical applications. Recently, 12-parameter
equations of state of the Span–Wagner type for selected linear and cyclic siloxanes
have become available, see Colonna et al. (2006) and Colonna, Nannan & Guardone
(2008b), and siloxanes were proposed as candidate BZT fluids, see Colonna & Silva
(2003) and Colonna, Guardone & Nannan (2007). These fluids are light silicon oils
currently used in Organic Rankine Cycle turbomachinery applications and considered
as potential candidates for the experimental verification of the existence of non-
classical phenomena, see Zamfirescu et al. (2006a, b) and Colonna et al. (2008a).

Figure 13 shows the RSR of the cyclic siloxane D6 (C12H36O6Si6) and of the linear
siloxane MD4M (C14H42O5Si6), computed by means of the mentioned multi-parameter
equations of state. The qualitative trends obtained in the previous section with the
van der Waals model are therefore confirmed by the more complex Span–Wagner
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model. Note that, even for the most complex siloxane fluids, the conditions depicted
in figure 12 are never encountered and all plots qualitatively resemble the results
shown in figure 10. To conclude, as first noticed by Thompson & Lambrakis (1973),
it should be recalled that the value of Γ and therefore the shape and size of the RSR
for a given fluid strongly depends on the thermodynamic model used to describe the
fluid properties, whose accuracy is to be validated against experimental results, see
Colonna et al. (2007).

4. Conclusions
A new thermodynamic region is introduced to circumvent the limits of the currently

accepted definition of the non-classical region, which relies exclusively upon the sign
of the fundamental derivative of gasdynamics Γ .

The rarefaction shocks region, which also encompasses thermodynamic states with
Γ > 0, is bounded by the double sonic locus and the liquid-vapour equilibrium
curve and embeds the Γ < 0 region. The rarefaction shocks region embeds all the
thermodynamic states which can possibly be connected by a rarefaction shock.

The existence of only one double sonic shock along a given isentrope is
demonstrated for dense gases and therefore the double sonic locus is a curve in
the volume–pressure thermodynamic plane.

Results include the computation of the rarefaction shocks region obtained with
the simple polytropic gas model, but the numerical procedure is also applied using
the multi-parameter Span–Wagner thermodynamic model for siloxanes. Although the
extent of the rarefaction shocks region is found to be strongly dependent on the
thermodynamic model of the fluid, the qualitative trend given by the van der Waals
model is confirmed by the more accurate Span–Wagner equation of state.

The correct determination of the size and shape of the thermodynamic region in
which non-classical phenomena can possibly occur, namely the definition of the
rarefaction shocks region introduced here, is key to the design of applications
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exploiting non-classical gasdynamic effects and to the experimental investigations
of non-classical phenomena in the dense gas region.
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